8.1 SEQUENCES

EXAMPLE A Investigate the sequence $\{a_n\}$ defined by the *recurrence relation*

$$a_{n+1} = 2$$
 $a_{n+1} = \frac{1}{2}(a_n + 6)$ for $n = 1, 2, 3, ...$

SOLUTION We begin by computing the first several terms:

а

$$a_1 = 2$$
 $a_2 = \frac{1}{2}(2+6) = 4$ $a_3 = \frac{1}{2}(4+6) = 5$ $a_4 = \frac{1}{2}(5+6) = 5.5$ $a_5 = 5.75$ $a_6 = 5.875$ $a_7 = 5.9375$ $a_8 = 5.96875$ $a_9 = 5.984375$

These initial terms suggest that the sequence is increasing and the terms are approaching 6. To confirm that the sequence is increasing, we use mathematical induction to show that $a_{n+1} > a_n$ for all $n \ge 1$. This is true for n = 1 because $a_2 = 4 > a_1$. If we assume that it is true for n = k, then we have

 $a_{k+1} > a_k$

 $a_{k+1} + 6 > a_k + 6$

so

and
$$\frac{1}{2}(a_{k+1}+6) > \frac{1}{2}(a_k+6)$$

Thus

We have deduced that $a_{n+1} > a_n$ is true for n = k + 1. Therefore, the inequality is true for all *n* by induction.

 $a_{k+2} > a_{k+1}$

Next we verify that $\{a_n\}$ is bounded by showing that $a_n < 6$ for all n. (Since the sequence is increasing, we already know that it has a lower bound: $a_n \ge a_1 = 2$ for all n.) We know that $a_1 < 6$, so the assertion is true for n = 1. Suppose it is true for n = k. Then

 $a_k < 6$

 $a_k + 6 < 12$

 $a_{k+1} < 6$

so

and

$$\frac{1}{2}(a_k+6) < \frac{1}{2}(12) = 6$$

Thus

This shows, by mathematical induction, that $a_n < 6$ for all n.

Since the sequence $\{a_n\}$ is increasing and bounded, the Monotonic Sequence Theorem guarantees that it has a limit. The theorem doesn't tell us what the value of the limit is. But now that we know $L = \lim_{n \to \infty} a_n$ exists, we can use the given recurrence relation to write

$$\lim_{n \to \infty} a_{n+1} = \lim_{n \to \infty} \frac{1}{2}(a_n + 6) = \frac{1}{2}\left(\lim_{n \to \infty} a_n + 6\right) = \frac{1}{2}(L + 6)$$

Since $a_n \to L$, it follows that $a_{n+1} \to L$ too (as $n \to \infty$, $n + 1 \to \infty$ also). So we have

$$L = \frac{1}{2}(L + 6)$$

Solving this equation for L, we get L = 6, as we predicted.

• Mathematical induction is often used in dealing with recursive sequences. For a discussion of the Principle of Mathematical Induction see *Additional Topics: Principles of Problem Solving.*